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SUMMARY & CONCLUSIONS

Assessment of safety critical systems including software
cannot rely only on conventional techniques, based on statistics
and dependability models. In such systems, the predominant
faults usually are design faults, which are very hard to predict.
Therefore, the assessment can only be qualitative, and is
performed by experts, who take into account various evidence
sources.

The aim of the SERENE European project is to improve the
understandability, and repeatability of such assessments, thanks
to a representation of the expert’s reasoning by a mathematical
model (a Bayesian Belief Network). The subject of this paper is
the presentation of the BBN built by EDF to model one of its
assessment approaches, valid for the products for which EDF
writes the requirements specification, and then monitors the
development made by an external supplier.

No doubt that, before it yields reliable forecasts, this kind of
model will require many years of calibration, by comparison
between the predictions it gives, and the real, observed safety
level of the evaluated systems. However, we think that in the
short term, they can bring a rationale in the discussions
between experts. They will also help in determining which are
the most influential variables in the design process of a system,
which is a necessary prerequisite for setting up any kind of field
experience collection.

1. INTRODUCTION

During the recent years, there has been a trend to replace
conventional electro-mechanical systems for the control of
industrial plants with computer based systems. Although this
kind of technology clearly has many advantages, it is not yet
widely used in safety critical applications, such as reactor
protection systems of nuclear power plants.

The explanation for this reluctance is the complexity of the
safety assessment, and the licensing of these systems, due in
particular to the characteristics of  software.

One cannot claim that the impact of design faults is
negligible when compared to the effect of hardware faults
(which are much easier to estimate): in fact, it is usually
predominant ! This is unfortunate, because the design faults are
by far the hardest to predict. This is due to the fact that a digital

system behaviour is subject to discontinuities: the slightest
change in its inputs, or in its design can result in a dramatically
different (and potentially catastrophic) behaviour.

For safety critical systems, software reliability (and, more
generally, the reliability related to design faults) cannot be
estimated by means such as reliability growth models, because
the number of observed failures is (fortunately) far too low to
allow any statistical processing of this data.

Thus, the only way to license such a system is to build a so-
called ‘safety case’, or ‘safety argument’, which is a collection
of all kinds of evidence related to both the development process
and the final product. The kind of information to be collected,
and the way to do it, are now relatively well defined, by means
of template documents, and check-lists such as those given in
the SHIP (Ref. 1) and CASCADE (Ref.2) ESPRIT projects.

But so far, no method has been proposed in order to
combine the diverse sources of evidence into an overall safety
assessment. This crucial work entirely relies on the assessor’s
expertise.

Electricité de France is currently involved in an ESPRIT
project called SERENE (see partners list in the
acknowledgements) with the objective of building a method and
a tool that could contribute to this ‘high level’ part of safety
arguments, in order to improve the repeatability of the
assessments and make them more understandable.

SERENE relies on the use of Bayesian Belief Networks, a
formalism well known for its ability to reason on uncertain
facts, to model and formalize the assessor’s expertise.

The object of this paper is the result of the work
performed at EDF, which was to build a BBN that could
help EDF’s assessors to weight properly the various sources
of evidence, in order to arrive at a final judgement.

The paper is organised as follows :
• Section 2 gives a definition of a BBN, and shows on a

tutorial example how it can be exploited,
• Section 3 very briefly presents the SERENE method,
• Section 4 describes how EDF develops and assesses its

instrumentation and control (I&C) systems,
• Section 5 describes the BBN we built,
• • Section 6 gives some results of calculations performed with

the BBN.



2. WHAT IS A BAYESIAN BELIEF NETWORK ?

BBNs (sometimes called Belief Networks, Causal
Probabilistic Networks, Causal Nets, Probabilistic Cause-Effect
Models, and Probabilistic Influence Diagrams)  are a quickly
expanding technology, in many areas where decision aids are
needed in a context of uncertain knowledge about the «  real
world », for example in the medical, military and financial
domains (Ref.3).

The theoretical development of BBNs dates back to the
1970s, but at that time, the lack of efficient algorithms and of
useful tools impaired the development of practical applications.

Nowadays, a number of tools (among which is HUGIN
explorer, the tool used by the SERENE partners) allow on the
one hand, efficient calculations on an existing BBN, and on the
other hand, the automatic construction of a BBN from a
(sufficiently large) database of experimental facts. Although the
latter kind of tools should still be considered as ongoing
research, they already give very promising results, leading way
to an extremely wide range of applications.

A BBN is a relatively simple mathematical object; however,
we will present it here in a rather informal way, in order not to
puzzle the readers who are totally unfamiliar with this concept.

Any reader interested in a comprehensive, mathematical
presentation of BBNs and the algorithms necessary to process
them should refer to Ref. 4, whereas somebody who wants to
know more about the applications, and how to build a BBN
starting from human expertise might rather refer to Ref. 5. The
latter book contains a demonstration version of the HUGIN
explorer tool, which is also available on the web, at the address:
www.hugin.dk.

2.1 A simple modeling problem involving uncertainty

The small example we are going to use now to introduce the
BBN concepts is adapted from the SERENE Method document
of the SERENE project.

Let us imagine that we wish to model the following
knowledge: « Bill and John go to work using different
transportation means. John drives his car, whereas Bill goes by
train. Bill rarely misses his train, and the train is nearly always
on schedule, except on strike days. However, a train strike does
not imply that Bill will definitely be late (he might leave early
and drive). A train strike can also cause John to be late because
traffic is heavier in that case. But, John is often late anyway,
because he often oversleeps, and therefore a train strike only
increases the likelihood of his lateness by a small amount. In
the event of a train strike, John is less likely to be late than
Bill. »

Now, given that knowledge, how could we model the
following inferences, which seem quite reasonable ?
1-  If we know Bill is late, we believe that there is a train strike,

and we think that John is (slightly) more likely to be late,
2-  Suppose we find out that John is late. This evidence

increases our belief in both of the possible causes (namely a

train strike and John oversleeping). But if we learn that Bill
is late too, we will be tempted to infer that a train strike
occurred, and was the cause of John’s lateness, which
decreases our belief that he overslept.

2.2 A BBN to represent knowledge

A BBN is a graph (consisting of nodes and arcs) together
with an associated set of probability tables, called node
probability tables (NPT), since they have a one to one
relationship with the nodes of the graph.

Bill
late

John
late

Train
strike

John
oversleeps

Figure 1 : A BBN representing the knowledge described in
the text in § 2.1

The nodes represent discrete random variables. In our
example, the four variables (see Figure 1 below) have only two
possible values: 'True' and 'False'. The arcs represent causal
relationships between variables. Since a train strike can cause
Bill to be late we model this relationship by drawing an arc
from the node 'Train strike' to the node 'Bill late'.

The key feature of BBNs is that they enable us to model and
reason about uncertainty. In our example, in the BBN we model
this by filling in a node probability table for each node. For the
node 'Bill late' the NPT might look like this:

'Train strike' =
'True'

'Train strike'
= 'False'

Pr('Bill late' =
'True')

0.6 0.1

This is actually the conditional probability of the variable
'Bill late' given the variable 'Train strike' . The table gives
only the probability of the event 'Bill late' = 'True' , since
Pr('Bill late' = 'False') = 1- Pr('Bill late' = 'True') 1. Informally,
the particular values in this table tell us that Bill is very
unlikely to be late normally, but if there is a train strike he is
likely to be late (the probability is 0.6).

To reflect accurately our knowledge depicted above, we
model the relationship between John’s lateness and its two
possible causes by the following probability table:

                                                       
1 Note that from that point, we will always give only the
probability of the value 'True' for variables with only values
'True' and 'False'.



John
oversleeps True False

Train
strike True False True False

Pr( 'John
late' =
'True')

0.7 0.5 0.4 0.1

The probability tables associated with the nodes 'Train strike'
and 'John oversleeps' are somewhat different in nature. These
nodes have no 'parent' node in this model (we call them root
nodes), and therefore we only have to assign a probability to
each of their two possible values 'True' and 'False'. In fact, we
will assume that Pr('Train Strike' = 'True') = 0.1, and that
Pr('John oversleeps' = 'True') = 0.4.

There may be several ways of determining the probabilities
of any of the tables. For example, we might be able to base the
probability table of 'Train strike' on previously observed
frequencies of days when there were train strikes. Alternatively,
if no such statistical data is available we may have to rely on
subjective probabilities entered by experts. The advantage of
BBNs is that they allow to employ both subjective probabilities
and probabilities based on statistical data in a unified
framework.

2.3 Entering evidence in a BBN to make inferences

The inferences given in § 2.1 (and many more !) can be
obtained automatically by calculations (according to probability
theory) performed on the BBN we just described.

The BBN is in fact a concise representation of the joint
probability distribution of the BBN variables, which is the
most complete information one can have about this set of
random variables. This joint probability distribution could, in
this simple example, alternatively be given by a large unique
table, giving the probabilities of the 2 4 possible combinations of
values for all variables. Building this table would be an
intractable task for a large BBN, but it is not necessary, since
calculations can be performed directly on the BBN. For
example, we might want to calculate the (unconditional)
probability that Bill is late:

Pr(Bill late) = Pr(Bill late | train strike) * Pr(train strike) +
Pr(Bill late | no train strike) * (1 - Pr(train strike))

          = (0.6 * 0.1) + (0.1 * 0.9) = 0.15
This probability is an example of an "a priori" probability: it

reflects our knowledge on the event 'Bill late' in the absence of
information about the real state of any of the BBN nodes.

The following table recaps the a priori probabilities for all
the nodes of our example BBN:

John
oversleeps

Train strike Bill late John late

0.4 0.1 0.15 0.286

In fact, the most important use of BBNs is in revising
probabilities in the light of actual observations of events.
• Suppose, for example, that we know there is a train strike.

We can "enter this evidence" in the BBN, by setting
Pr('Train strike' = 'True') to 1. Then the conditional
probability tables already tell us the revised probability for
Bill being late (0.6) and a calculation indicates that Pr(John
being late) becomes 0.52, which is consistent with the
sentence « In the event of a train strike, John is less likely to
be late than Bill. » of § 2.1. If it was not, this would mean
that the NPTs would have to be modified.

When we enter evidence and use it to update the probabilities in
this way we call it propagation.
• Suppose, now, that we do not know if there is a train strike

but do know that Bill is late. Then we can enter the evidence
that 'Bill late' = 'True' and we can use this observation to
determine the (revised) probability that there is a train
strike, and the (revised) probability that John will be late.  In
fact, the observation that Bill is late significantly increases
the probability that there is a train strike (up from 0.1 to
0.4) and slightly increases the probability that John is late
(from 0.286 to 0.364). This is the "formal" version for
inference 1 in § 2.1.

• Here is a last propagation example, corresponding to
inference 2 in § 2.1. Suppose we find out that John is late.
This evidence increases our belief in both of the possible
causes (namely a train strike and John oversleeping).
Specifically, applying Bayes theorem yields a revised
probability of train strike of 0.182 (up from the prior
probability of 0.1) and a revised probability of John
oversleeping of 0.727 (up from the prior probability of 0.4).
Therefore, if we had to bet on it, our money would be firmly
on John oversleeping as the more likely cause. Now suppose
we also discover that Bill is late. Entering this evidence and
applying Bayes yields a revised probability of 0.571 for a
train strike and 0.637 for John oversleeping, which
indicates, that in fact, the two causes are practically equally
likely.

This very simple example shows that using a simple BBN
model enables us to make inferences which are much more
precise than what would have been possible by using just
sentences with expressions such as  « very likely », « unlikely »,
« slightly increases »... and so on. The same remark is true
when we model an expert’s reasoning in a safety argument.

In fact, the real power of BBNs comes when we apply the
rules of probability to propagate consistently the impact of
evidence on the probabilities of uncertain outcomes. A BBN
will derive all the implications of the beliefs that are input to
it. This is how BBNs can expose some of the common fallacies
in reasoning due to misunderstanding of probability.

2.4 What about the complexity of calculations on BBNs ?



Calculating all the revised probabilities once evidence is
entered in a large net with many dependencies and nodes which
can take on more than two values can be a very difficult task,
requiring huge computational resources. From a theoretical
point of view, the problem can be shown to be NP-hard.

This observation, until relatively recently, meant that BBNs
could not be used to solve realistic problems. However, in the
1980s researchers discovered propagation algorithms which
were effective for large classes of BBNs. With the introduction
of software tools that implement these algorithms (as well as
providing a graphical interface to draw the graphs and fill in
the probability tables) it is now possible to use BBNs to solve
complex problems without doing any calculation by hand.

For example, propagation on the 101 nodes BBN that we
describe in § 5 is performed in less than one second by the tool
HUGIN explorer on a PC with a pentium 100 processor.

3. THE SERENE METHOD (QUICK OVERVIEW)

3.1 General principles

Like in any application domain the building process of a
BBN to represent a safety argument will require three steps:
• identification of nodes: the properties (e.g. suitability of

design, competence of the development team, effort spent on
validation...) of the safety-related system and its
development which can affect safety are identified: they will
become the nodes of the BBN model,

• identification of the structure of the BBN: the relationships
between these properties determine the structure of the
BBN. The relationships are causal but subject to
uncertainty: for example, small software modules are more
likely to increase testability, but it is still possible for the
testability to be high in software without modules,

• filling in of NPTs: The conditional probabilities associated
with each relation must be entered to complete the model.
Then exploitation of the model can take place, by

(repeatedly) entering evidence and propagating. More precisely,
to use a model to argue the safety of a particular system,
assessments (by means of audits, tests, measurements) must be
made to determine the actual value of the properties which can
be observed, in order to obtain (by propagation) revised beliefs
about the unobservable properties (like safety). The greater the
proportion of these properties which can be assessed, the better.
Those which can not be assessed are assumed to be distributed
according to the probabilities obtained by propagation. This
feature introduces flexibility in the use of the model.

The probabilities can be revised each time a new piece of
evidence becomes available, which means that trends can
already be estimated in the early stages of a system
development.

The aim of the SERENE method and the associated tool
is to provide an efficient support in all these activities.  The
two following paragraphs tell how this is achieved.

3.2 Hierarchical decomposition and generic patterns

Building a BBN is not an easy task and the partners of the
SERENE project had considerable difficulties in the early
stages of the project, in spite of their good knowledge of the
safety assessment domain.

They felt that a possibility to build a BBN in a hierarchical,
top-down manner, would help very much both the construction
and the understanding of the model. For example, the BBN
presented in section 5 was built in two levels. This model has a
rather complex structure, and 101 nodes. It is therefore
impossible to represent it on a single, flat graph.

Another major finding of this project was that, in spite of
the fact that BBN models of safety arguments that were
produced by SERENE partners had a number of differences,
reflecting the different perspectives and industry sectors of the
partner companies, it was possible to extract from them a
surprisingly small number (five) of typical patterns,
corresponding to generic reasoning schemes.

The SERENE tool, which is currently under development,
will support both the hierarchical decomposition, and an
efficient mechanism to import BBN typical patterns, thus
providing the user with the ability to build a BBN in a
« bottom-up » approach.

3.3 Eliciting the probabilities

Another important issue in the building of a BBN, is the
elicitation of NPTs. Since we are in a domain where very little
formalised feedback of experience is available, we have to elicit
probabilities from experts. The SERENE method provides
guidance in the elicitation process, by describing the many
kinds of biases experts can be subject to, and how to avoid them
or at least how to reduce their impact. One simple example is
the fact that one gets much better estimations in terms of
frequencies of events rather than probabilities.

4. HOW EDF USUALLY DEVELOPS AND ASSESSES ITS
I&C SYSTEMS

4.1 Overall organisation of the development of an I&C system

EDF usually does not develop the I&C systems on its own.
In the main steps of a typical acquisition process, EDF
successively:
• expresses its needs in a "system requirements specification"

document,
• launches a bidding process, and selects one or, in some

cases two (in order to avoid problems due to a monopoly)
supplier(s),

• monitors the development conducted by the chosen
supplier(s) (by peer reviews, audits, various kinds of
assessments),

• performs acceptance tests on the delivered system,
• in some cases, EDF integrates parts it has developed with

the supplier's parts,



• finally  validates the whole system with on-site tests, before
putting it in real use.

4.2 Overall organization of the safety analyses

Several teams of EDF carry out the various safety analyses
and tests of the I&C system (as a whole, i.e. including the parts
developed by EDF and those provided by external suppliers).
Some teams focus on the evaluation of hardware, others on the
analysis of system architecture and software, while further
teams focus on commissioning tests covering groups of co-
operating systems & equipment. One team synthesizes the
results of all these tests and analyses, and delivers the global,
"consolidated" safety argument to the licensing authorities.

4.3 Methods, techniques and information used to construct the
safety argument

The main methods, techniques and information used to
construct the safety argument are listed below:
• audits: analysis of the supplier development cycle (e.g. the

organization set up by the supplier for the system
development, means and techniques used, etc.), verification
of the application of the supplier Quality Plan, verification of
the existence of some documents produced during the system
development, supplier's experience in the area.

• source code analysis: conformance with programming
standards commonly used or defined in the system
requirements specifications, static analysis, (e.g. control or
data flow analysis), etc.

• modeling of the most sensitive parts of code, either by the
role they play or by the fact they implement subtle
mechanisms, like interruptions.

• review of the tests and verifications carried out by suppliers
(choice of test criteria, choice of test data, etc.).

• test of the system under various environmental conditions
(seismic, vibration, pressure, temperature, resistance to
electromagnetic and radioactive effects,  resistance to defects
or variations of power supply, etc.).

• functional validation tests (test of performances, compatibility
of interfaces with other I&C systems).

• documents on the feedback experience acquired by the
manufacturer, in particular when some software modules are
already used in other operational systems.

In order to reduce the scope of the BBN that we give in this
article, in the following paragraphs, only the "functional
safety" is considered. Functional safety is the ability of the
system to avoid insecure behaviour in the absence of hardware
failures, human errors, abnormal environmental conditions
(such as vibrations, high temperature...). In other terms,
functional safety is a perfect suitability of the system with
respect to real needs.

5. A BBN FOR ASSESSING A SYSTEM
DEVELOPED BY A SUPPLIER

5.1 Context

The systems considered in the BBN we are going to describe
are the I&C systems used in nuclear power plants (NPPs).

In a NPP, an individual system represents only a small part
of the design of the plant and of its I&C.  Important issues like
safety analyses or risks mitigation are not handled at the level
of individual systems, but at the level of the complete power
plant and its I&C. The plant level analyses and design identify
the individual systems of the power plant (which may be
mechanical, electrical or computer based), and provide the basis
for the specification of the main requirements applicable to
each individual system.

As a consequence, what EDF requires of an individual I&C
system (and particularly of an individual computer based I&C
system) is that its requirements specification and its
specification are consistent with the inputs provided by the
overall plant analyses and design, and that it complies with its
own requirements and specification. Safety analyses are not
considered relevant at the level of individual systems.

5.2 Methodology

We always worked as a group, through meetings, following
the steps given in section 3, but without the support of the
SERENE method (because it didn't exist at that time !).

In several occasions, the group could confront its ideas to
those of other partners of the SERENE consortium, which
caused very vivid and interesting debates. One of the first issues
that were debated was the number of states that should be
chosen for variables of the BBN. We decided that this number
should be even, in order to force the assessor to choose between
a rather positive, or a rather negative judgement, in the nodes
where evidence would be input. Choosing 4 states would lead to
large NPTs (64 values to be specified for a node having 3
parent nodes !). It would be impossible to justify such a number
of values, and anyway, the process of evaluation of these values
would be excessively long and cumbersome. Thus, it was
decided to use only 2 states, meaning good or poor, acceptable
or not acceptable, yes or no, etc. Moreover, in order to simplify
the description of the BBN, all nodes correspond to sentences
such as: object x is y, with the two possible values: "yes" or
"no".

Example: "Requirements specification is suitable"
We also decided, after a few attempts to evaluate the values

of the probabilities, to choose them (in most cases) from the
following set: {0, 0.25, 0.5, 0.75, 1}. The rationale for this
choice is that it would be impossible to justify a higher number
of levels in this scale, which is just what is needed to express
the following concepts: impossible, improbable, probable, quite
probable, certain.

Another advantage is that the complement to 1 of any
probability from the scale is also in the scale.

In fact, values 0 and 1 (which model deterministic
knowledge) may cause some inconsistencies in the model,



which would not appear with any other value, no matter how
close to 0 or 1 they would be.

For example, having declared that the probability for the
state "yes" is equal to 1 for a node without parent, makes it
impossible to choose the value "no" for this state in the
exploitation of the BBN. This is quite normal, in the light of
BBN theory, but it means that probabilities of 0 or 1 should be
avoided, which is not very practical for the description of the
BBN. In fact, in our BBN, values 0 and 1 as probabilities
should be understood as "very close to" 0 or 1.

5.3 The BBN itself

The BBN presents an overview of how EDF assesses the
processes applied by the supplier and by EDF in order to ensure
/ assess the functional safety of an E1B system delivered by the
supplier, and how EDF integrates the view points and opinions
of various technical experts. It focuses only on functional safety
of systems provided to EDF by external suppliers. In particular,
it does not address:

• hardware issues (random failures, resistance to
aggressive environment: radiation, high temperature,
vibrations...),

• human factor issues,
• global issues encompassing other systems & equipment

and the overall design of the power plant and of its
process,

• modification of systems already in operation,
• how technical features of the I&C system are assessed.
These limitations are justified by the necessity to limit the

size and the complexity of the BBN.
Because of the general principle given above (each node

corresponds to a simple sentence, with two possible states: yes
or no), the description of the BBN simply consists of its
topology, and, for each node, of the following elements:

• a detailed description of the meaning of the sentence,
• the node probability table,
• a rationale explaining the numbers given in the node

probability table.
The BBN is organised in two breakdown levels. § 5.3.1 (just

below) will give the description of the top level, and § 5.3.2 will
describe one of the sub-nets mentioned in the top level.

5.3.1 Top level model

In Figure 2, the nodes correspond to sub-nets, i.e. sub-
graphs of the total BBN, and the lines correspond to the
existence of communication between two sub-graphs. This
communication comes through the existence of a common
node, called "join node".

The global structure of the BBN is a chain that follows the
stages of a development process.

Each step in this process serves as an input for the next
one, and has a great influence on it.

Each step involves a construction process and a
verification process, and the suitability of the final result is
influenced by the appropriateness of both processes.
"Appropriateness" for verifications means that the results of
these verifications are relevant: the verifications cover enough
aspects, and are enough exhaustive.

The experience of the supplier of the system is quite
important, and introduces a certain degree of dependence
between all stages.

System conforms to real needs

System conforms to SRS

Development is suitable

Design is suitable

Specification is Suitable

SRS is suitable

System can ensure safety

Supplier has appr. experience

SRS = system requirements
specification

Figure 2: global structure of the BBN



The final sub-net, labelled "System can ensure safety", is
reduced to a single node, and is the "output" node of the
BBN.

The probabilities of the states of this node ("Y" or "N")
give the level of confidence that one can have in the I&C
system.

The various sub-nets are relatively similar in their
structures, and in their node probability tables. The following
paragraph describes a typical example: the sub-net modelling
the system development phase of the life-cycle ( labelled
"Development is suitable" in Figure 2).

5.3.2 Detail of one of the sub-nets (Sub-net "Development
is suitable")

The graph of this sub-net is given in Figure 3, at the end
of the paper.

The nodes "marked" by a name beginning with "J-" (in
grey) are join nodes: they belong to two different sub-nets (or
more). These join nodes ensure the communication of
information between the various sub-nets of the argument.
The nodes marked with a dot are those for which evidence
will be entered if available.

We now give two examples of node definitions, with a
textual description of the ideas expressed by the
corresponding  NPTs:

Node "Verif. by EDF is appropriate (for Dev)"
Verif. by EDF
is appropriate
(for Dev)

This verification assesses some key
properties of the Dev:
• Is complexity of developed

components mastered and justified
(checked by static analysis of the
source code) ?

• Will it lead to a maintainable system ?

The corresponding NPT expresses the fact that the
competence of experts is of paramount importance. In
particular, the probability of an appropriate verification is set
to 0 whenever the experts are not competent.

Node "Verif. by supplier is appropriate (for Dev)"
Verif. by
supplier is
appropriate (for
Dev)

This verification assesses some key
properties of the Dev:
• Is complexity of developed

components mastered and justified
(checked by static analysis of the
source code) ?

• Will it lead to a maintainable system ?
• Are the programming rules respected ?

The corresponding NPT is even more pessimistic than the
previous one, because the verifications performed by the

supplier necessitate a lot of tests, and therefore are very
sensitive to the amount of resources.

6. EXAMPLES OF CALCULATIONS WITH THIS BBN

Here are some illustrative calculation results obtained
from this BBN with the HUGIN explorer tool.

The following table gives the probabilities for the values
« yes » of the main nodes of the network, i.e. the nodes
corresponding to the various stages of the lifecycle. The
columns of the table, numbered 1 to 5, correspond to the
scenarios explained after the table.

Scenario n°
 ->

 1  2  3 4  5

System
requirements
specifications
are suitable

.576 .9999907 0 1 0

Specification
is suitable

.419 .9999483 0 1 0

Design is
suitable

.265 .9996823 0 1 0

Development
is suitable

.173 .9979557 0 .9999598 0

System
conforms to
SRS

.138 .9952124 .113 .9983177 .243

System can
ensure safety
(= System
conforms to
real needs)

.112 .9670761 .138 .9822346 .279

1 - A priori probabilities. In the absence of any evidence,
the predictions become more and more pessimistic as the
development progresses. This is quite normal, since no
evidence of successful verifications is entered.

2 - No evidence is entered, except the fact that all
verifications give good results: this is always true for safety
critical systems. Such a system can not be a candidate if it
does not pass one or more tests. The probabilities are very
close to 1, especially in the first stages of the life-cycle. This
seems quite reasonable, since all NPTs of root nodes contain
probabilities of .75 for the positive value of these nodes.

3 - Worst case calculation: negative evidence is entered in
all nodes analogous to those marked with a black dot in
Figure 3 (but the verifications and tests are still assumed to
give good results). In this case, the probabilities are close to
zero, except in the last stages, where the evidence coming
from the test results gives some (little, in fact) hope.

4 - Best case calculation: positive evidence is entered in
all nodes analogous to those marked with a black dot in
Figure 3. The result is very much like the result of scenario 2,
except that probabilities are closer to 1.

5 - Case with conflicting evidence: inputs to SRS are not
suitable (the fact of supposing that this is known is very



pessimistic, which explains the zeros in column 5), all
verifications give good results, but they are not exhaustive:
they are performed by competent actors, using good methods,
but lacking resources. This lack of resources is known, which
is reflected in the BBN by setting all nodes "EDF opinion on
verification activity X is good" to NO.

The results of the above simulations show that the BBN
gives consistent results, which are in accordance with
intuition. A "validation" of this BBN will consist in trying it
on numerous scenarios, and comparing the results of
calculations with the experts expectations.

It is important to note that, in spite of the fact that the
results are numerical, they are nothing more than an elaborate
presentation of experts beliefs. They must not be taken as real
probabilities, and must be used only for comparative
purposes.

7. CONCLUSION

Our experience is that a Bayesian Belief Network is easy
to understand, and can very much improve the
communication quality between experts: such a language has
far more expressive power than, for example, check lists, even
sophisticated ones, making use of weights. Therefore, BBNs
could facilitate discussions between assessment experts.

In this paper, we have shown an example of BBN which
could be used to model a safety argument, with some
simulated applications.

This BBN is a prototype; its construction was a good
occasion to make explicit, and capitalise the knowledge of

experts in assessment of computer based safety critical
systems.

This know-how will be cast, together with the know-how
coming from other partners of the SERENE consortium, in
the SERENE method and the associated tool.

Thanks to their help, it will become possible to build a
new BBN to model each safety argument, making it much
easier to understand.

A growing use of the SERENE method should help in
determining which are the most influential variables in the
design process of a system, which is a necessary prerequisite
for setting up any kind of field experience collection.

A long term goal for the SERENE method could be to
yield reliable forecasts, but to achieve this goal will require
many years of calibration, by comparison between the
predictions given by the method, and the real, observed safety
level of the evaluated systems.
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EDF op. on Dev verif. by supplier

EDF resources are appropriate
EDF verif. experts are

competent

Supplier verif. experts
 are competent

Verif. by supplier is appropriate
Verif. by EDF is appropriate

Results of supplier verif.
of Dev are good

J-Supplier has appropriate
experience

Dev resources are appropriate

EDF op. on Dev is good

J-System Dev is suitable

Dev methods are appropriate

Dev practices are appropriate

Dev team is competent

EDF op. on Dev practices is good

EDF methods are appropriate

J-System Design is suitable

Results of EDF verif.
of Dev are good

J-System conforms to SRS

Dev : development
EDF op. on x: EDF opinion on x

Figure 3: Sub-net "Development is suitable"

(Annex of the paper "Assessment of a Safety-Critical System Including Software:
A Bayesian Belief Network for Evidence Sources")




